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Reflectance spectroscopy and spectral imaging are efficient methods for exploring the
distribution of materials across a planetary surface.

To be spectrally distinct, the materials of a given set must have distinct chemical and
crystalline properties, that result in statistically distinct signals across the spectral
range and resolution of the sampling instrument (fig. 1).

Here we present methods and computational
tools built toward comprehensive simulation of
the measurement chain, for use during design,
preparation and operation of a spaceborne
Instrument.

Figure 1. Influences attributed to the
material, instrument, both, or neither, that
contribute to the variance of a spectral

reflectance measurement.

We can make a simple approximation of
spectral sampling according to the instrument
spectral channel transmission and noise and
the material spectral reflectance:
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Figure 2. Resampled reflectance
spectrum according to transmission
profiles and noise of example multispectral
instrument (top), given by signal-to-noise
ratio as a function of reflectance (bottom).
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We can estimate the noise by assuming Poisson distributed shot-noise, and by
defining the saturation SNR for the saturation reflectance of an observation.

We used this simple sampling method to investigate the performance requirements for
a replacement infrared spectrometer for the ExoMars Rosalind Franklin rover. We
produced the visualisation of figure 3 (right) to show band depth locations.
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Figure 3. Sampling of
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We used this simple sampling method to search for spectral parameter combinations
(SPCs) that highlight a target material against a background. We ran LDA on all SPCs
of PanCam, to find the minimal filters needed to separate hematite from the

mineralogy expected at Oxia Planum [2, 3].
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Figure 4. Sampling of hematite and Oxia Planum materials with PanCam, and the SPC with the highest Fisher
Ratio. Also shown are the range of accuracy values for all SPCs, and the relationship between the Fisher Ratio

and the accuracy.
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We used simple spectral sampling to make
comparisons between the expected spectral
sampling of the MMX OROCHI Flight Model
and our COTS Laboratory Simulator
(LOROS). We produced visualisations of all
spectral parameter values, to show where
changes in filter CWL/FWHM produced
above-noise changes.
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Figure 5. Difference in sampling of Mars relevant
minerals and CCs for OROCHI and LOROS.

OROCHI Spectral Parameters

zeolite-prehnite
serpentine
saponite
pyroxene
plagioclase
orthopyroxene
nontronite
nogoya
murchison
montmorillonite
magnesium-sulfate
magnesite
kieserite
kaolinite I II IIII
e L]
illite
hydrated-silica
gypsum
forsterite
fayalite
chlorite
calcite

alunite

zeolite-prehnite
serpentine
saponite
pyroxene
plagioclase
orthopyroxene
nontronite
nogoya
murchison
montmorillonite

magnesium-sulfate

magnesite
kieserite
kaolinite
jarosite

illite
hydrated-silica
gypsum
forsterite
fayalite

calcite

alunite

Aslope / o(Aslope)

Aband_depth / o(Aband_depth) Ashoulder_height / o(Ashoulder_height)

Figure 7. Change in spectral parameter values between LOROS & OROCHI vs Noise.

We have interfaced with physically based rendering software PBRT to produce
complete image product simulations from 3D environment models, computed with all
quantities as floating point S| unit. We have coupled this with bespoke instrument
radiometric models to give raw noisy images, that we have calibrated, to test
end-to-end product generation [4].
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Figure 8. Schematic and equations
of physically based rendering and
camera simulation.
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Figure 9. Simulated image products for
ExoMars PanCam, showing simulated
image products for imaging an outcrop

hosting goethite and hematite.
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