Simulating the Image Chain of the ExoMars 2020 Rover PanCam Wide Angle Cameras

Roger B. Stabbins (roger.stabbins.10@ucl.ac.uk) 1,2, A. D. Griffiths^{1,2}, A. J. Coates^{1,2}, M. Gunn³, C. Huntly³, F. Trauthan⁴, N. Schmitz⁴ and the PanCam Science Team

PanCam on the ExoMars 2020 Rover

Figure 1: CAD Model of PanCam, also hosting NavCam and ISEM. Credit: ESA

PanCam¹ is a 3 camera system for the ExoMars rover², featuring a pair of Wide Angle Cameras (WACs), for 3D stereo vision and multispectral imaging³, and a High Resolution Camera (HRC), for close-up colour imaging.

The Camera Transfer Function

 $f_{Cam}: \mathbf{L}_c \left(\boldsymbol{x}_c, \hat{\omega}_c + \boldsymbol{\Theta}, \lambda \right) \to \mathbf{S}^F \left(\boldsymbol{x}_c, \hat{\omega}_c \right)$

The camera forms a digital image from the inward spectral radiance at the point x_c , the centre of the lens, with each pixel representing a direction in Θ , the field-of-view around the camera pointing direction, ω_c . f_{Cam} is composed of the functions outlined below:

Radiance \xrightarrow{Optics} Irradiance $\xrightarrow{Detector}$ Image

Optics Function: from Scene Radiance to Focal Plane Irradiance

DEPARTMENT OF SPACE & CLIMATE PHYSICS MULLARD SPACE SCIENCE LABORATORY

W @rbstabbins

Features of the PanCam WAC Simulation

anguage	
IDL Object Oriented	

Resolution

1.0 F

Spatial : 1024×1024 (*FoV Only – no stray light*) Spectral : 701 channels, 400 - 1100nm, 1nm $\Delta\lambda$ Values : Double-precision

Data Inputs

Scene Radiance Cube ($W/m^2/sr/\mu m$) Filter Transmission Cube (%) Lens Transmission Cube (%) Quantum Eff. Vector $(e-/\gamma)$ Optics Vector (4 misc parameters) Detector Vector (30 misc parameters)

Reconstructing spectral transmission for all angles

---- Centre Wavelengt - - Algorithm Fit

 $\tau(\lambda)$ is represented by a 1024x1024x701 cube. We have measurements of $\tau(\theta, \lambda)$ for $\theta_m \in \{0^\circ, 4^\circ, \dots, 40^\circ\}$ for each filter (from Aberystwyth University).We reconstruct

The Wide Angles Cameras (WACs)

Detector

Star 1000 Radiation Hard Monochrome Sensor CMOS APS 3T 1024x1024 pixels 15µm Pitch 10-bit ADC

Filters

6 RGB Broadband (3 per WAC) 4 Solar Narrowband (2 per WAC) 12 Geology Narrowband (6 per WAC)

The Image Chain

Information (e.g. 3D structure, mineral presence, grain size etc), can be inferred from an image by formulating and solving an inverse problem, g. The type of inverse

Figure 4: The geometry and notation of the optics model. The spectral transmission in this model is directionally dependent, due to the wide (>15°) FoV of the WACs. The optics of previous multispectral cameras of surface missions have used FoVs <20°, and so could be described sufficiently by a single spectral transmission function for all directions.⁴

Detector Module: from Focal Plane Irradiance to Digital Image

Array

Amplification

Column Amplifier Offset Noise

 $cpn_i \sim \mathcal{N}\left(1, \sigma_{CPN}^2\right)$

 $\mathbf{O}_{CPN}: o_{ij} = cpn_i \; \forall \; j$

Traverse Planning
ection
$$f$$
 $Irradiance \xrightarrow{Pixel} Electrons \xrightarrow{SenseNode} Voltage \xrightarrow{FPGA} Voltage \xrightarrow{ADC} D$

Figure 7: L1 example reconstruction, showing improvement on Gaussian fitting, by preserving changes in FWHM with θ , and maintaining the high kurtosis form of $\tau(\lambda)$. This has been repeated for all filters.

Preliminary Simulation Verification

Prior to the delivery of the PanCam flight model, the simulation serves as a prediction tool for camera performance. However, we still need to verify the workings of the simulation. We make preliminary verifications by simulating the scene radiance of a camera calibration environment, and compare results to calibration performed by the HRC team (DLR) on 5 Star 1000 RGB units.

PTC - Total Noise - HRC EBB All Colours

- the dense cube from sparse measurements by:
 - 1. From $\tau(\theta_m, \lambda)$, find features λ^{Centre} , λ^{FWHM+} , λ^{FWHM-} for each
 - 2. Find n_{eff} by fitting the function $\lambda^{f}(\theta)$ to each feature.⁷

$$\lambda^{f}\left(\theta\right) = \lambda_{o}^{f} \cos\left(\sin^{-1}\left(\frac{\sin\theta}{n_{eff}}\right)\right)$$

- 3. For each measured $\lambda_i(\theta=0^\circ)$:
- i. Compute $\lambda_i(\theta_m)$
- ii. Fit a cubic polynomial to $\tau(\theta_m, \lambda_i(\theta_m))$
- iii. Interpolate $\tau(\theta, \lambda_i(\theta))$ for $\theta \in \{0^\circ, 0.05^\circ, \dots, 26^\circ\}$
- 4. This gives a dense function $\tau(\theta, \lambda)$, from which we can linearly interpolate $\boldsymbol{\tau}(\lambda)$ for $\theta_{ii} \in \Theta$

Figure 2: WAC assembly CAD

Model, illustrating the filter

wheel and camera module.

Target Selection

Paleogeology

Credit: MSSL

Figure 10: RGB sections from the hyperspectral cube of an Figure 11: For each target, we can make predictions of the optimal exposure time for abstract composition of soil and rock classes (identified by MER Pancam⁹), sky, and the PanCam Calibration Target. each filter channel.

complete software simulation of the cameras.

Sense Node Conversion Gain Model

Summary

Illumination

Ground

Sun : Zenith

Bright Soil (bl, bc)

Dark Rock (br)

White Rock (cl)

Bright Dune (cc)

Dark Rock (cr)

Calibration Target

- A forward model informs choice of inverse methods
- We present a Forward Model of the image capture of the PanCam WACs, featuring:
- Directionally dependent transmission

- Nonlinear CMOS Gain

Future Work

- Verification against PanCam FM/EM
- Rapid analysis tuning of inverse methods
- Merger with PBRT implementation of f_{Bender}
- Library assembly of f_{BRDF} by experiment and collation

Institutions

¹Mullard Space Science Laboratory, UCL, UK ²Centre for Planetary Science at UCL & Birkbeck, UK ³Department of Physics, Aberystwyth University, UK ⁴Institute for Planetary Research, DLR, DE

Acknowledgments

This research is funded by a UK Space Agency Aurora Studentship **Notation:** A is a matrix of elements a_{i,i} giving the value a for each pixel (i,j). $\mathcal{P}, \mathcal{N}, \mathcal{LN}$ give Poisson, Normal and Log-Normal deviates.

References

[1] Coates A. J. et al (2017) Astrobiology, [2] Vago J. L. et al (2017) Astrobiology, [3] Schott, J. (2007) Remote Sensing: The Image Chain Approach, Cousins C. R. et al (2012) Plan. & Space Sci., [4] Gunn M. & Cousins C. R. (2016) Earth & Space Sci., [5] Gow R. D. et al (2007) IEEE Trans. Elec. Dev., [6] On-Semiconductor (2015) NOIS1SM1000 A/D Star 1000 datasheet. [7] Macleod, H. A. (1989) Thin Film Optical Filters, [8] Bell, J. F (2006) JGR, [9] Bell, J. F (2007) The Martian Surface